Պարապմունք 22. հանրահաշիվ

 Պարապմունք 22.

Խառը առաջադրանքներ նախորդ թեմաները ամրապնդելու համար.

1.Կատարիր բազմապատկումը
3x⋅(x+2) 2a⋅(a−5)

2a^2 - 10a

5y⋅(y^2+3-4y^7) 5y^3 + 15y - 20y^8

−4x⋅(2x^2−y-7z+5) -8x^3 + 4xy +28xz - 20x

2. Տրված աստիճանը ներկայացրեք արտադրյալի տեսքով.

ա) (xy) ^ 2 = x^2y^2

բ) (2x) ^ 3 = 8x^3

գ) (3y)^4 = 81y^4

դ) (2abc)^5 = 31a^5b^5c^5


3.Գտեք նման միանդամների գումարին հավասար միանդամը,

ա) 2x + 3x = 5x

բ) 3m + 5m =8m

գ) a + 4a + a = 6a

դ) 3b + b + b+131b =136b


4.Գտեք նման միանդամների տարբերությանը հավասար միանդամը,

ա) 7x - 2x = 5x

բ) a - 3a = -2a

գ) 10a - 18a-2a = -10a

դ) - 4b - 2b-b = -7b

ե) 17a ^ 2 b ^ 2 - 9a ^ 2 b ^ 2 = 8a^2b^2

զ) 24b ^ 3 c ^ 3 d^3 - (- 17) b ^ 2 * c ^ 3 d^3 =24b^3c^3d^3 + 17b^2c^3d^3

5. Ձևափոխեք կատարյալ տեսքի բազմանդամի.

ա) 5a - (a + 1) = 5a - a - 1 = 4a - 1

բ) x - (6x - 5) = x - 6x + 5 = -5x + 5

գ) 2a - (7a + 5) = 2a -7a - 5 = -5a - 5

դ) 7 - 4x - (-2x - 1) = 7 - 4x + 2x + 1 = 8 - 2x

6. Պարզեցրեք արտահայտությունը.

ա) 7a + (2a + 3b) = 7a + 2a + 3b = 9a + 3b

բ) 9x + (2y - 5x) = 9x + 2y - 5x = 4x + 2y

գ) (5x + 7a) + 4a = 4a + 5x + 7a = 11a + 5x

դ) (5x - 7a) + 5a = 5x - 7a + 5a = 5x - 2a


7.Կատարեք բազմապատկումը 

ա) (a + 1) ( a + 1 ) = a^2 + a + a + 1 = a^2 + 2a + 1

բ) (z + 1)(x + 2) = zx + 2z + x + 2

գ) (3x + 2y)(3x + 2y) = 9x^2 + 6xy + 6xy + 4y^2 = 9x^2 + 12xy + 4y^2
դ)(5ax+by)(12a^2x^3-b) = 60a^3x^4 - 5axb + 12a^2x^3by - b^2y

8. Գտեք ամբողջ արտահայտության արժեքը, եթե
a = - 1,  b = 2, c = 3.

ա) abc = -1 x 2 x 3 = -6

բ) a b ^ 2 c ^ 3 = -1 x 2^2 x 3^3 = -1 x 4 x 27 = -108

գ) 3a ^ 2 bc = 3 x (-1)^2 x 2 x 3 = 3 x 1 x 2 x 3 = 18
դ) (abc)^2 = (-1 x 2 x 3)^2 = (-6)^2 = 36

9. Օրվա խնդիրները։
Գրատախտակին շարքով գրված են 9 հատ 9 թվանշան․
9 9 9 9 9 9 9 9 9։  Նրանց միջև քանի՞ հատ «+» նշան պետք է տեղադրել, որպեսզի ստացված արտահայտության արժեքը հավասար լինի 2025-ի։ 999 + 999 + 9 + 9 + 9 Պատ․՝ 4

10.  Արմենը աստղանիշերը փոխարինեց թվանշաններով այնպես, որ
∗ 9 ∗ < ∗ 9 ∗ < 1 ∗ 2 ։ Գտնել Արմենի գրած թվանշանների գումարը։ 190 < 191 < 192 1+0+1+1+9=12

Լրացուցիչ։ Խնդիր օլիմպիադայից։
Եթե երկնիշ թվի թվանշանների տեղերը փոխենք, ապա թիվը կմեծանա 72-ով։ Գտնել այդ թվի թվանշանների գումարը։ 19 1+9=10 Պատ․՝10

Комментарии

Популярные сообщения из этого блога

QR CODE

QR փազլ